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The description of the whole spectrum of the multiplicative clustering operator 
Y-- in terms of its bound states is given. Namely, it is shown that 

a ( J )  = a [ / ' ( J  [b)] (0.1) 

where ~ is the space of bound states of the operator Y and F is the second 
quantization operation. 

KEY WORDS:  Transfer matrix; clustering operator; essential spectrum; 
bound states. 

1. I N T R O D U C T I O N  

The (v + 1)-dimensional, v ~> 1, Ising model is the most investigated system 
of statistical mechanics, but many problems concerning it remain unsolved. 
Among them is the problem of spectral analysis of its transfer matrix ~-. 

The transfer matrix was introduced by Onsager for the two-dimen- 
sional Ising model as a useful tool of investigation of a completely 
integrable system of statistical mechanics ~). After the appearance of 
euclidean strategy in the quantum field theory, the transfer matrix has 
taken a new meaning. ~2) Its spectrum describes the "particle structure" of 
the lattice model of quantum field theory. Investigations of transfer matrix 
from this point of view were started by Minlos and Sinai. ~3) They gave an 
idea about multiplicative structure of matrix elements of Y in a special 
basis. This idea was realized in Ref. 4 (v = 1) and in Ref. 5 (v/> 1), where it 
has been proved that Y is unitarily isomorphic to the so-called mul- 
tiplicative clustering operator. For this reason, the present paper concen- 
trates on multiplicative and additive clustering operators. 
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110 Zot'odek 

Among the results concerning the spectrum of the operator Y for the 
Ising model at high temperature we note the work of Malyshev and 
Minlos, (6) where the authors separate n-particle invariant subspaces, and 
the papers, (v'8) in which the absence of two-particle and three-particle 
bound states is proven. There exists a conjecture, connected with the above 
results, called a "quasi-particle picture," which says that Y- is unitarily 
equivalent to F ( J  }~1) ) in F + ( ~ ) ,  where ~ is the one-particle subspace 
of ~- and F + ( ~ )  is the symmetrie Fock space constructed over ~ (see 
Ref. 9). 

In the present paper we shall prove one step of the "quasi-particle pic- 
ture," the formula (0.1). This result is a generalization of the HVZ Theorem 
about the spectrum of the multiparticle Schrodinger operator (see 
Refs. 10,11) to multiplicative clustering operators. Equation (0.1) reduces 
the localization of the spectrum of ~-- to finding its bound states. The next 
step would be the investigation of the absolute continuity of a (Y)  in n-par- 
ticle subspaces. We put this off for forthcoming papers. 

The author thanks V. A. Malyshev for valuable discussions. 

2. N O T A T I O N S  A N D  S T A T E M E N T  OF THE M A I N  RESULT 

Let Cz ~ be the set of all finite subsets of v-dimensional integer lattice 
Z v. We consider the Hilbert space 

j%F = 12( C ~v ) 

with orthogonal basis (e r, T~ C~v) 

er(T') = 6 r,v', T, T 'eCzv  

Definition 2.1. The self-adjoint operator r in ~ is called a mul- 
tiplicative clustering if its matrix elements have the following expansion 

(eo, J-eo)= 1 

(eT, J E T , ) :  ~, ~ f l  e)(Li, L;), 
s>~l {Li, L;), i=l, . . . ,s} i - -1  

T u T ' r  
(2.1) 

where the summation is over all 
{(L1, Li),..., (L,, L;)} of the pair (T, iv') 
L~r~ Ly= L~ r~ Lj =O for ira j), such that 

(unordered) 
(i.e., U Li = T, 

partitions 
U L ; = T ' ,  

Li~aO L ~ O  i =  1,..., s 
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The (clustering) functions 
properties 

(a) co (L+x ,L '+x )=co(L ,L ' )  xET/~ 
{x~ + x,..., x ,  + x} (translational invariance) 

(b) co(L, L ' ) =  co(L', L) (self-adjointness) 

(c) 

o < co({o}; {0})=  ~ < 1 

where 

co(L, L') = c U ( L , / J )  satisfy the following 

{xl,..., xo} + ~ =  

and lco(L, L')l <... M)o(1- )~) [3 dL~'~ 

if [LwL'I/>2 (2.2) 

where M >  0, 0 < fl < 1 are constants, IBI denotes the cardinality of the set 
B ~ 7/v and d8 is the minimum length of the tree graph connecting points of 
the set B. (The metric in Z v is given by the formula 

d(x l ,x2)=~lx l ( i ) -x2( i ) l ,  x j =  (xj (1) ..... xj(1)), j =  1, 2) 

Remark 2.7. (a) The authors (see Refs. 4 ,6)  usually use the 
following stronger than (2.2) estimate 

[co(L, L')I ~<M/3 aL•176215 

which is satisfied for transfer matrix ~ of the Ising model (with continuous 
or discrete time) when t is greater than certain constant to > 0. The hound 
(2.2) is sufficient for purposes of this work and contains the cases of great 
and small t. 

(b) There exists a notion of additive clustering operator H, which 
appears as the generator (Hamiltonian) of the semigroup ~ of transfer 
matrices of the (v+  1)-dimensional Ising model with continuous timeY 23 
Its matrix elements satisfy the expansion 

(eT, HeT,)= ~ re(L, L') 
O g - L c  T , O : / - L ' c  T' 

T~L = T ' \ L '  

where the functions co = co ~/satisfy the following properties 

(i) co (L ,L ' )=co (L+x ,L '+x )  x~7/v 

(ii) co(L, L ' ) =  co(U, L) 

(iii) co({0), { 0 } ) = a > 0  and ]CO(L,L')J<~My LUL' 

if IL u LII >~ 2 

where M > 0 and 0 ~< fl < 1 are constants not depending on L, L'. 

(2.3) 

(2.4) 

822/43/1 2 8 



112 Zot~dek 

It turns out that e -'H, t ~>0, is a multiplicative clustering operator 
with parameters 2 = e -a '  and fil--* 0 as fi--* 0 (see Ref. 13). Therefore, the 
analysis of the spectrum of H is equivalent to the analysis of the spectrum 
of the multiplicative operator e--'H for t > 0. 

(c) The definition of general clustering operators and their basic 
properties are given in Ref. 12. 

We recall now certain known results about the clustering operators 
and introduce some notations. The letter A will denote either 3- or H. 
Denote 

L . = { f e o f f : f ( T ) = O  if IT[#n}  

~(0)  = Lo ~(1) = ~ C) Lo (2.5) 

A(~ = A [~(0) A(1)=A [~l,) 

In the space S (1) acts the group Z v by translations 

UxeT=eT x XEZ'~ T ~ C ~  

The operator A commutes with this action and hence we have the 
following direct integral representation 

~q~(a) = fv ~ Y(A1)dA A(1) = f~# A(J)dA (2.6) 

where T v is v-dimensional tori and 

W()) = { f :  f ( T +  x) = e2'~i(x'A)f(T) [If]] ~1  

1 

= r:o~ ~' T~~ [f(T)l 

A(1)=AISA 1) 

Denote also for A 6 q]-v 

Lf(~2) = f>~ 

T h e o r e m  1. 
parameters 2 and ft. Then for 2 sufficiently small and for any A s ~v 

~ ) ) |  ~ ) ~ .  d2 

~-(A 2) = (~'~(1) | ~--(1)) I J~) (2.7) 

H(A 2) = (H (1) | id+ id| H(1)) I ~o(2) 

Let 3- be the multiplicative clustering operator with 

aess( 3-(~ ) ) = ~(3-(A 2)) (2.8) 
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(Here a (a~,~ or ad) denotes spectrum (essential spectrum or discrete 
spectrum)). 

For A = ~- or H we denote ~ = one-particle invariant subspace (see 
Refs. 3, 6) 

O'b(A(1)) = ~ ad(A() )) 
A ~ T  v 

=Iv ~AdA ~ v| 

(2.9) 

where f f b , A  =span  {eigenvectors with eigenvalues of finite multiplicity of 
A~') .  

Consider now the space 

= r ( ~ )  

In this space acts the group 2 ~ via the translations U~. Hence 

where 

v| 

co  

1 +  " ' "  +An=A 

In the space ~ acts the operator D = F ( Y ]  ~ ) =  ~ DA dA commuting with 
the action of 7/v. Therefore we have an infinite particle system (~, Ux, D it) 
homogenous with respect to the translations and with dynamics defined by 
the operators D u, t e ~. From Theorem 1 follows the following result. 

Theorem 2. The joint spectrum (a subset of ? -~x~ ~) of trans- 
lations and transfer-matrix of the Ising model, is the same as that one in 
the above free system. 

Theorem 2 has some obvious consequences. 

Corollary 2.1. (a) The spectrum of 3- forms a semigroup 

n = 0  

(b) o-(/'(~ f.~)) = a(y-) 

(c) o-(H)= ~) ~ ab(H(1))=~(dF(Hl~b)) 
n = O i = l  

(d) ~r(dF(Hl~,))ca(H) 
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The property (d) of Corollary 2.1 for H (a Hamiltonian of the Ising 
model with continuous time) was proved by Malyshev in Ref. 9 with the 
help of the scattering theory methods. Corollary 2.1 gives the description of 
the spectrum of the operator Y- (or H) in terms of thresholds as in the 
HVZ Theorem about the essential spectrum of the Schrodinger operator 
(see Refs. 10, 11). This makes possible the construction of the scattering 
theory for clustering operators. 

Theorems 1 and 2 can be easily generalized to the lattice systems with 
bounded spin in the domain of existence of exponentially regular cluster 
expansion. The author hopes that some analogies of Theorems 1 and 2 
hold for unbounded spin lattice systems and for continuous P(~0)2 quan- 
tum field theory. 

Proof of Theorem 1 consists of two parts corresponding to the 
inclusions 

a(y~2)) c a~s~(J- ~ I)) and a ~s(r ) ) c o-(~- ~ 2) ) 

and is given in the next two sections. The proof of Theorem 2 we put off to 
the last section. 

3. PROOF OF THE INCLUSION a(~-~2)) co . , , (~ - -~  ~)) 

Since O-ess(J-(A2))=O'(~ "-(2)) (see (2.7)) it is enough to prove the 
inclusion 

~ ( j ~ ) )  = G(y~ 1)) (3.1) 

The idea in the proof of (3.1) is simple. If 2 ~ a(Y(A 2)) then one can choose 
the approximate eigenfunction of Y-(A :) of the form (Pl(T1)" q)2(T2), where 
q)i ~ 5~()), i = 1, 2, (A1 + A 2 = A), are approximate eigenfunctions of J ( ) )  
with eigenvalues 2i, 2122 =2.  The function q ) ( T ) = ~  ~o1(T1) q)2(T2+ l), 
where we sum over such T1, T2 that T =  T1 w (T2 + t) and Itl is large is an 
approximate eigenfunction of Y(A1) with eigenvalue 2. This is due to the 
independence (clustering) of the matrix elements of Y at large distances 
(see 2.2). 

In order to be precise we define a map 

G : s 1 7 4  ,,.~(1) ..., =(t7,(1) 

Gq)(T)= ~ qo(T1, T2), q) c d ( 1 ) |  r T ~ C z ,  (3.2) 
T1 ~0 ,  T 2 ~ 0  
TI  ~ T 2 =  T 
T1 c~ T2=O 



Localization of the Spectrum of Transfer Matr ix of Ising Model 115 

I . e m m a  3.1. The restriction of G onto 5e(A 2) defines the (unboun- 
ded) operator G" ~(A 2) ~ ~(A 1~. 

Proof. Any element of ~(A 2) can be represented as a function (0 of two 
variables such that 

qo(T1 + x, T2 + x) = eZ~i(x'A)~P(T1, T2) T1, T2~Cz .  X ~ Z  ~ 

and (3.3) 

1 
II<Pll~ T = ~ - -  I~o(Tx, T2)I = < 

T1,T2:0~ TI,T2# 0 [Tll 

From this Lemma 3.1 follows. 
We introduce also the unitary operators 

St : ~(~ (1) @ ~(1)  _..> ~Q~(1) @ ~QO(1), 

by the formula 

S,~o(T~, T2) = q)(T1, T 2 + t  ) q) ~ ~,(~(1)@ &oo) 

t ~ Z  ~ 

T1, T2 ~ Cz~ (3.4) 

ke rnma  3.2. The operators St leave the expansion 

@ ~(1)  ~- f f  (,oil) @ oz.(l) d2 d# ~(1)  

invariant and commute with the operator j ( 1 ) |  y(~t. 

Proof. It is a simple consequence of definitions. 
Assume that 2co-(J(2)) .  Then for every e > 0  there exists 0~Y(A 2), 

[10]l = 1, such that 

II(~e~2)- ;.)011 ~<~ (3.5) 

We can assume that 0 is finite in the sense that the set 

{(T1, T 2 ) : 0 e  TI, 0(T1, T 2 ) # 0 }  

is finite. Let us define 

0, = GS, O e Y( ) )  (3.6) 

We show that for large Itl 0, # 0  and 0, is an approximate eigenfunction of 
the operator ~]1) with eigenvalue 2 (see Lemma 3.3 and 3.4 below). This is 
enough to the proof of the inclusion (3.1). 

k e m m a  3.3. If Itl is sufficiently large then 110t11_%1~> 1. 
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Proof. 
for example). Then we obtain 

~,(T) = ~ ~(Tt, T2+t)=~O(~)(T) (3.7) 
T1r 0, T2 &0 
TI ~ T2= T 
TI c~ T2 = O 

where each ~(~) corresponds to the different partition ~ of the set 
{1,..., n(~)}, n(~)= ITI =2,  3,..., into two subsets. Because ~ is finite ~(=) 
have nonintersecting supports for large It[ and I1r ]IP,(=)~II~]:), 
where P ,  is the orthogonal projection onto L,  (see (2.5)). 

Let us fix a certain order for each set T c  7/v (lexicographic, 

Lemma 3.4. We have an estimate 

for large Itl. 

Proof. By (2.1), (3.3), and (3.4) we have 

[ (3  --(1)- 2) ~O,](T) 

T'r  s>~l {(Li,L;)} 1 

{ ~ StO(T'I' T'2)} =NI(T) + N2(T)+ N3(T) 
7jl~742=T ' 

where 

N I ( T ) =  E E '  ~o(Li, L'~)O(Ti, T ; + t )  (3 .8 )  
Tll 4- O, ~ :/- 0 {(Li,L;)} 

N2(T) :  - S Y~ Y~ Y~ 
TIr T2r ~ 0 ,  T'2~0 {(LbL~)} {(Li,L~)} 
TI w T2 = T ~ c~ ~2 e' 0 partition partition 
TI c~ T2~0 of(Thai)  of (T2,T2) 

X { H ( y . ) ( L i ,  L : ) I ~ ( z ) ( L i ,  L ~ ) }  @(Ttl ,  Tt2 

N 3 ( T  ) = ~ [ - ( ~ - ( 2 )  ),) S t ~ t j ( T 1  ' T2)  ( 3 . 1 0 )  
TI~O, T2~O 
TI ~ T2-- T 
Tl C~ T2 = O 

+t)  
(3.9) 

where the summation Z '  in NI(T) is over such partitions {(Li, L;)} of the 
pair (T, T'IuT'2) that L;c~T'Ir and L;c~T'2,/=O for certain i. Proof of 
Lemma 3.4 will be ended if we prove the following 
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Lemma 3.5. We have 

(a) IINlll--+0 as Itl--+ oo 

(b) N 2 = 0  for large Itl 

(c) [IN3[[ ~<2e for large Itl 

ProoL (a) We change the order of summation in (3.8): we first sum 
over T'•O, next over partitions {(Li, L;)} of the pair (7", T') and at the 
end over partitions (T'I, T;) of the set T', which satisfy the condition 

L~c~T'lVaf and L ~ T ' 2 r  for certain i (3.11) 

The number of partitions (T'I, T;) is bounded by a constant D depending 
only on 0 (because of finiteness of 0). Hence we obtain 

INI(T)I ~ D  ~ ~ H Ico(Li, L;)I 
T':I <~ IT'I <~n {(Li,L~)} 

�9 sup 10(T'a, r i + t ) l  (3.12) 
ri,~2 

where n=n(~b) and sup is over partitions (T'I, T~) of the set 7" satisfying 
(3.11). We choose a number i, for which the condition (3.11) is true and 
denote L" = L~ c~ T'I, L"' = L~ c~ T~. By (2.2) we have 

Io)(Li, L;)l<~M)~(1-)OfldKi~c;<~Mlfl (u2ll'l+(u6)%Uc'~(c''+') (3.13) 

One can prove the inequality (3.13) using the fact that ~O is finite. The pair 
(T'I, T~) is such that T'2+t lies near T'I and then L'" is far from 
L"(dL,,~ L,,~ c,,, > I tl - const). Considering the cases: alL, ~ c,,~ (L','+,) <~ 3 [tl 
(here dL, uc,,~c,,, ~> �89 [tl +~dc,~c,,,~(L,.+t)+const), and dc~,~c,,~(c,,,+,) > 3 ItI 
(here dc ,~ c,,~c,,,, ~> dL ,~L,,<~<v,,+~)-- Itl - c o n s t ,  /> _1 Itt +yl dc~,~ c,, u <c,,,+,) + 
const), we get (3.13). 

From (3.12) and (3.13) we have 

INl(Z)l <~Dlfl(1/2)ltl E E I-[ MIU1 ~'~; 
T':iT'l<<.n {(Li,Lff)} 

where/71 = / 31/6. Now we use the results of Ref. 6.1. From Lemma 2.2 and 
corollaries from it in this work it follows that 

HN1]I=Dlfl (1/2)1tl sup F 1 
s ~  ~1 r:;"~ r l T l  
I l f l l  < 1 

• Z E H Mlfl dL'wL; IS(T) I  
T':IT'I~n {(Li, L~)} 

~< c o n s t  fl(1/2)ltl __+ 0 as  I tl -+  oo 
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(b) Nullness of N2(T ) follows from the fact that in (3.9) 
t#(T'~, T'2+ t )~0  iff T'x and T~+ t lie near each other and have no large 
diameter. But in this case T'~ n T'2=0 and the sum ~ 2 ~  i in (3.9) is empty. 

(c) By Lemma 3.2 

T h  T2 

cr 

where the sum Y~ is over such volves of c~ as in (3.7). Here the functions 
)(~) have no nonintersecting supports for different ~'s but 

(X(%X(e))-*O as lt l--,oo for ~ # f l  

(It follows from the finiteness of ~, and exponential decay (2.2) of clustering 
functions.) From finiteness of ~, boundness of y - ( o  and points (a) and (b) 
of Lemma 3.5 we obtain that HN3H is bounded uniformly in It]. Thus 

[[N3II2 ~ ~ IIZI~)[I 2 as 
c~ 

and the following chain of simple inequalities 

c~ 

It l-+ oo 

1 

1 

ITI] + IT2I 0 E  T I , T 2  ~ 0 
T1 ~ T2 = 0 

I(St(~ - (2) -  J~) ~/)(Tj, T2)I 2 

~< r lS , ( J  (2) - ; )  0 El ~2, ~< ~2 

finishes the proof of Lemma 3.5. 

4. PROOF OF THE INCLUSION aess(~--(A 1)) C a(~--(A z)) 

This inclusion corresponds to the hard part of the proof of the HVZ 
Theorem (see Refs. 10, 14). We need show that c~(Y~l))\~r(J~ 2)) consists 
only of eigenvalues of finite multiplicity. By Ref. 14 it is equivalent to the 
fact that for any function f :  N -~ ~ with compact support not intersecting 
cr(J~ 2)) the operator f ( Y ~  1)) is compact. The idea of the proof of this is in 
approximating the operator f ( J ( )  )) by evidently compact operators. 

In the sequel we use a certain translationally invariant partition of 
unityj~ in C~:v = { T~ Cz~ :1TI ~> 2 } (analogous to that one used in Ref. 14). 
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Let 
IIITIII= ~ I x - y J  

x , y ~  T 

d(T1, T z ) = m i n { l x - y l  : x ~  T~, yE T2) 

The functions j~ of this partition are labeled by the partitions 7 of the sets 
{ 1,..., n(c~)} into two subsets. Fixing the lexicographic ordering of the sub- 
sets of 7/~ we have a correspondence between cds and partitions of the sub- 
sets T of 2 v, I TI = n(c~), into two subsets TI~ and T2~. 

L e m m a  4.1. There exist functions j= on C~0 such that: 

(a) j~(T+x)=j~,(T) ,  x E Z  v 

(b) E j ~ = l  

(c) j= (T)=0  if d(Tl=, T2=)< I[]TIII'ITI-3 or [TI Cn(~) 

,Drool (We follow to Ref. 14). We put j'~(T) = 0 if 
d(T~, Tz=)<IIITIII'ITt 3 or IT] Cn(~) and 1 in other cases. We define 
J~ = J'=(Z J'=)-1. If we show that 52 j'= > 0 then Lemma 4.1 will be proved. 
Let T = Z  ~, 2~<lTl<oo.  We choose x , y ~ T  such that I x - y l  is the 
greatest possible. Then r = I x -  Yl >~ Ill Till " IT[ 2. We fix coordinates in ~ '  
such that x = (0 ..... 0) and y = (r, 0,..., 0). Consider the domains 

r(l-- 1) < z(l) < 
R1 = Z ' l T l _  1 

We see that at least one domain R~ contains no points of T. Then the par- 
tition (T~=, T:=), where T~=(T:=) contains points laying in the left (right) 
side of R~ is the partition, for which j'=(T)~0. 

We introduce also the functions J<,x(T)=l  if II[TIII~K and 0 
otherwise; J>x= 1 -  J<_~. Define the operators 

Uq~(Tl, T2) = q~(T, w T2) if T~ = (T~ w T2)l~ and T: = (T~ w T2):~ 

= 0 o therwise  (4.1) 

The following identity is obvious 

f(~-~A'~) 

= f(J-(J)) J~<,v + )-~ Gf(J - ]  2t) F~j~J>K 

+ ~ [f(~-~A 1)) -- Gf(3"-(A 2)) F~] j~J>K 

= Q~ + Q2 q- Q3 (4.2) 



120 Zotedek 

The required assertion follows then from the following: 

Lemma 4.2. 

(a) QI is compact 

(b) Q2 = 0 

(c) JIQ3Jl-*9 as X---, oo 

Proof. Part (a) is true since the operator J_<K is compact. Part (b) 
follows from our choosing o f f  The point (c) is enough to prove in the 
cases, when f ( 2 ) =  1 and f ( 2 ) = 2 .  (This is due to the compactness of 
~(y-).) 

Let f ( 2 ) =  1. Then Gf(3 --/2)) U = GFL It is easy to see that the matrix 
elements of GF ~ equal to (er, GUer , )=Sr ,  r, Sirl,,(~ ). Therefore Q3 = 0  in 
this case. 

Let f (2)  = 2. Then 

(er, (~--(1)_ G3-(R)F~)j~J>Ker,) 

- 

{(L L I )  } i, ' 

) I-[ ~o(L,, L;)( jJ>K)(T') 
{(Li ,LI )} :  

= ~ ' I ]  o)(L~, L;)( jJ>x)(T')  

where the sum ~2' runs over such partitions {(L1, L;)} of the pair (T, T') 
that 

L; c~ T'~ # 0 and L; m T'2~ # 0 for certain i (4.3) 

Next, if L ; o  T'I,=/=~ and Ljc~ T~,r then by Lemma 4.1(c) 

Io~(Li, L;)I (j~J> x)( T') ~ M1 fl(1/2)d(Tl~'r'2")fl (1/2)dKiU L; 

<<. Mt  fiK/21 r'13(flt )dL~,~ L; (4.4) 

ill~2 ~ , ~ ~ , where / ~ 1  = . Indeed, if d(Tl , ,  T2,)>K/]T'] 3 then dL,~ L; ,.. d( TI,,  T2,) 
' ' •  ' ' and hence d/~, ~ L; >~ l d(Tl~, T2~) + 2 L, ~ L; and if d(Tl~, T2~) < KILT'[ 3 then 

(j~J>x)(T') = 0 and (4.4) is also true. From (4.4) we get the estimate 

I(eT, (Y-(~) -- Gy-(2)F ~) j~J> l~er,)l 

~< flK/21r'13 ~. H Mlfl~ s'~'s; (4.S) 
{ ( Li,L; ) } 
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Because the number of partitions of the set T' into two subsets equals 
2 Iv'l-  1, it is not difficult to show that (4.5) implies the inequality 

Pn ~ (if'-(1)_ G~--(2)F~) j~j>K19 m ~ flK/2m32m(Dfll)max(m,n), D > 0  

where P ,  is the orthogonal projection onto L,  (see Corollary 1 from 
Lemma 2.2 in Ref. 6.I). From this the convergence I]Q31/~ 0 as K ~  ~ can 
be easily derived. Lemma 4.2 is proved. 

5. PROOF OF THEOREM 2 

The assertion of Theorem 2 is equivalent to the equality 
a(DA) = ~r(~A) for every A ~ TL 

In order to show the inclusion a(DA)~a(YA) we observe that by 
Theorem 1 

= o o , , ( j - t l ) )  

where 

A I + A 2 = A  

= U �9 ' 
A I + A 2 _ A  

n 

= U U . . .  I | dl, d A i  ! k..) 
n >~2  ~ , A i - - A  1 

But a(DA) = {0} w U ~ 0  UZA,=A 1-[ ad(J] l ) )  and from the above our 
inclusion follows. 

Obviously, Oea(DA). Let now 0<2~a(@(A1)). Then either (i) 
2 ~ aa(Y--(A 1)) or (ii) 2 ~ a~s~(Y~l)). In the case (ii) by Theorem 1 )~ e a(J-(A 2)) 
and hence ,~ =2122, where 2~ ~a(Y(A1)), i= 1, 2, A~ +A2 =A. Now either 
21 e aa(Y(A~ )) or not. In the second case 2~ = 2324, etc. Since each 2~ is less 
than certain constant 2o< 1 (mass gap) then this procedure finishes at 
some step. Therefore 2=2~ ..... 2,, where 2~aa(3-(Al)), ZA~=A. This 
means that 2 ~ 6(OA). Theorem 2 is complete. 
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